Tkkrlab IPv6 workshop



# how is ipv6 different?

The basic idea is simple:

- \* Addresses 32 bit  $\rightarrow$  128 bit
- \* Learn from the past

The results are quite big:

- \* Internet is fully transparant again
- \* Usable peer-to-peer functionality
- \* IPv4 and IPv6 are incompatible



ipv6 | difference

# living side by side

IPv4 and IPv6 cannot talk to each other

- \* Desktops run both, side by side
- \* As a rule, try IPv6 first and fallback to IPv4
- \* Embedded apps usually make a choice
- \* Routers are often in the way

There are all sorts of transitioning techniques

- \* Tunneling: Pack IPv6 into IPv4
- \* Translation: NAT64, DNS64, SIPproxy64



ipv6 | difference

\* 128 bit = 8 groups of 16 bits
\* each 16 bit is in hexadecimal, separated by :
\* up to one "filler" with zeroes looks like ::

Example addresses:

\* 2001:db8:123:567:102:11:16:20
\* 2001:db8:0:0:0:0:12:13 = 2001:db8::12:13
\* 0:0:0:0:0:0:0:1 = ::1



Subnets fixate the initial n bits with the CIDR notation /n

\* 2001:db8::/32 covers example addresses

- \* ::1/128 is localhost
- \* ff00::/8 is for multicast
- \* 2000::/3 is for unicast (so, normal use)
- \* fe80::/10 is for local addressing

Prefixes are used for routing, BGP can merge them.



Routing parties process short prefixes, like /32

\* 2001:610::/32 is handed out by SURFnet BV

Individual users get a longer prefix

\* 2001:610:7a6::/48 belongs to Ecocentrum EMMA

End users can distinguish separate networks if they want

- \* 2001:610:7a6:7::/64 for the food store
- \* 2001:610:7a6:8::/64 for the plants business
- \* 2001:610:7a6:9::/64 for MTB Reparatie
- \* 2001:610:7a6:5060::/64 for telephony



\* Router interfaces advertise a /64 prefix

```
# /etc/radvd.conf
interface eth0
{
    AdvSendAdvert on;
    AdvManagedFlag off;
    prefix 2001:db8:66f:0::/64 { };
    RDNSS 2001:db8:66f::5 2001:db8:66f::6 { };
};
```

- \* Router sends these only rarely
- \* Upcoming interfaces inquire after routers



The last 64 bits are usually determined by the host

\* PREFIX::1 is still common for routers, similarly servers\* PREFIX:xxxx:xxff:fexx:xxxx for autoconfiguration

Autoconfiguration?

- \* Router advertises /64 prefix, router, [nameservers]
- \* Attach MAC address with ff:fe filler
- \* First MAC byte ^=0x02
- \* Ask neighbours if address is available
- \* Defend address from then on



Autoconfiguration... no DHCPv6 then?

- \* No need, but it is possible
- \* Router advertisement can set a ManagedFlag
- \* DHCPv6 can help with service location



# transitioning techniques

Tunneling:

- \* IPv4 proto 41: IPv6 inside IPv4
- \* No NAT traversal (it is not TCP, UDP, or ICMP)
- \* Dependent on co-operative router



# transitioning techniques

proto 41 used for 6in4 tunnels:

- \* Have a router unpack it
- \* Linux interface type sit, BSD calls it gif

```
# /etc/network/interfaces
iface sixxs inet6 v4tunnel
   address 2001:db8:123:456::789
   netmask 64
   local 192.0.2.12
   endpoint 192.0.2.163
   ttl 64
```



# transitioning techniques

proto 41 used for 6to4 tunnels:

- \* Addresses look like 2002::/16
- \* Following 32 bits are an IPv4 endpoint
- \* In the endpoint, receive and unpack proto 41
- \* Packets from 2002::/16 can be sent to 192.88.99.1
- \* 192.88.99.1 ls an anycast address

The RD variant can have different prefixes, default routers



### a mistake named teredo

- \* Teredo is a "specification" created by Microsoft
- \* Addresses look like 2001:0000::/32
- \* Un\*x implementation is called miredo
- \* Only intended as a last resort fallback



### a mistake named teredo

One problem with Teredo is:

- \* Very slow initial connections
- \* Delays discovery if IPv6 works
- \* Performance degradation if IPv6 is preferred
- \* Makes people switch off IPv6

And if that wasn't enough:

- \* NAT problems reflect on Teredo connectivity
- \* Teredo is only suitable for client-to-server, not peer-to-peer
- \* Teredo makes IPv6 inherit IPv4-specific problems



# beyond nat: freenet6 tunnels

Freenet6 offers free tunnels

- \* No subscription needed
- \* Dynamic IPv6 assignment
- \* Poor performance (500 ms roundtrips)

They use the TSP protocol

- \* Standardised by Freenet6 in RFC 5572
- \* Their software does not comply to their own standard
- \* Independent implementation on public-tsp.org

ipv6 | transition | skipnat



# beyond nat: sixxs tunnels

SIXXS hosts very good tunnels

- \* Proper registration required
- \* Fixed IPv6 assignments
- \* Static or dynamic tunnels
- \* Tunnels are pointopoint
- \* /48 Subnets can be routed over tunnels

Dynamic tunnels use a protocol named AYIYA

- \* Widely adopted implementation is AICCU
- \* IPv6-in-AICCU-in-UDP-in-IPv4
- \* Synchronise watches (use NTP)
- \* NAT traversing (includes keepalives)

ipv6 | transition | skipnat



### security issues

- \* Tunnels: Check addresses!
- \* No more NAT: Stateful firewalls!

ipv6 | transition | skipnat | security



# try it out

- \* Attach a computer, see autoconfiguration at work
- \* Configure name service (DNSSEC is available)
- \* Use ping6, traceroute6, dig aaaa
- \* Use ip -6 instead of ifconfig
- \* Connect hosts with 6in4 or 6to4
- \* Visit rijksoverheid.nl over IPv6
- \* Remind government of their comply-or-explain policy on IPv6
- \* Use Google over IPv6 (manually: ipv6.google.com)
- \* Lookup IPv6 addresses in whois.ripe.net
- \* Setup a tunnel to freenet6.net or sixxs.net
- \* Setup a subnet over that tunnel
- \* Make an IPv6 phone call through SIPproxy64
- \* Advertise your routes to your neighbours using radvd
- \* Does your OS accept multi-homed IPv6?

ipv6 | playtime



info@openfortress.nl http://openfortress.nl

