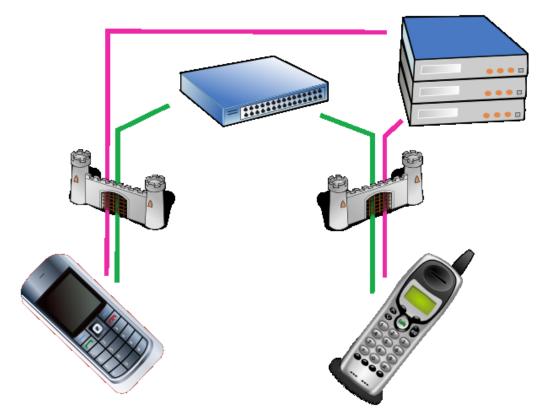

IPv6 telephony in an IPv4 world



Rolling out SIP seems so easy...

OpenFortress*

- * SIP travels around to setup the call
- * RTP connects media streams as directly as possible
- * Why pay for telephony if media bandwidth is fixed-rate?

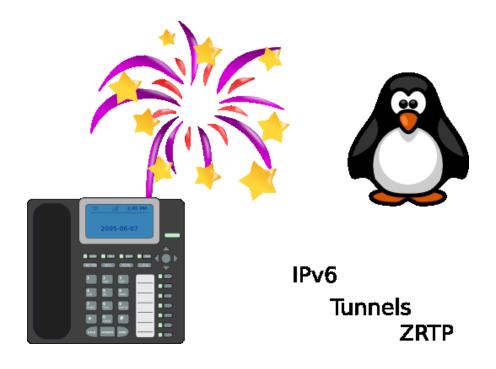
... but it usually ends in hosting media sessions

- * Firewalls are not transparent
- * NAT makes SIP very difficult to get right
- * Calls behind NAT cannot always be connected
- * Direct phone calls over the Internet are not generally possible
- * To provide certainty, an RTP proxy is needed
- * This means carrying media traffic in your bandwidth
- * Not likely to scale up to other forms of media

The (bold) solution is SIP over IPv6 only

* IPv6-only implies a need for transitioning measures

sipproxy64: bridging sipv4 and sipv6

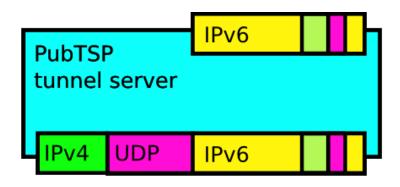


- * IPv4 phones with IPv6 representation
- * Possibly forward default-routed traffic

sipproxy64: bridging sipv4 and sipv6

- * SIPproxy64 has an IPv4-side and an IPv6-side
- * Phones or PBXs often support one address family
- * SIPproxy64 makes such phones visible on the other side
- * It will relay and translate SIP and RTP
- * Size is about 32 kB (even before minimising)
- * Only depends on libosipparser2
- * SIPproxy64 is ideal in routers
- * SIPproxy64 assumes local presence of IPv6
- * SIPproxy64 takes away a let's wait until... motivation
- * SIPproxy64 is entirely symmetrical in IPv4/IPv6

open source firmware for sip phones



- * working on open source firmware for SIP phones
- * IPv4-only nets supported with tunneling

open source firmware for sip phones

- * Telco's and phone makers wait for each other
- Lack of critical mass, nobody's moving
- * We decided to break through it with open source firmware
- * Seeking active manufacturer participation
- * License (probabbly) will be GPLv3:
 - → want manufacturers to share their porting work
 - → want firmware upgrades open to user
 - → want to see an active developer community

pubtsp: support for ipv6 apps on ipv4 nets

- 1. Not anonymous: NAT IPv4/UDP in IPv6
- 2. No registration needed
- Stateless tunnel service
- 4. Anycast addressable service

protocol in search of routers

Embedded apps can be IPv6-only if tunnels are available

OpenFortress*

pubtsp: support for ipv6 apps on ipv4 nets

- * Embedded devices are not likely to support two address families
- * Due to lack of resources: time, vision, money, memory space
- * IPv4 will be the safest choice for years to come

Embedded devices will probably stick to IPv4

- * IPv6 is currently not likely to work everywhere
- * Exception is when tunnels are suitable:
 - → Not anonymous == no extra danger of abuse
 - → No registration == no configuration
 - → Stateless == easy to use, easy to serve
 - → Anycast == can be found nearby, keep traffic local
- * No current tunneling protocol seems to support this?

pubtsp: support for ipv6 apps on ipv4 nets

- * PubTSP is a profile of RFC5572
- * Low 64 address bits contain IPv4 address and UDP port:
 - → Obtained during tunnel negotiation
 - → tunnel→IPv6: egress check
 - → tunnel←IPv6: derive IPv4/UDP values
- * PubTSP server is a simple tunnel program
- * Looking for LIR/BGP speakers for anycast address
- * Looking for routing parties to host tunnel servers
- * Suggesting ISPs terminate the traffic locally

references

http://devel.0cpm.org/sipproxy64/

http://public-tsp.org/

finishing

OpenFortress*

info@openfortress.nl http://openfortress.nl

OpenFortress*

digital signatures